Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

نویسندگان

  • Zhiyang Li
  • Calvin Leung
  • Fan Gao
  • Zhiyong Gu
چکیده

In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H₂O₂) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM⁻¹·cm⁻²) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Organic electrochemical transistors based on a dielectrophoretically aligned nanowire array

In this study, we synthesized an organic electrochemical transistor (OECT) using dielectrophoresis of a carbon nanotube-Nafion (CNT-Nafion) suspension. Dielectrophoretically aligned nanowires formed a one-dimensional submicron bundle between triangular electrodes. The CNT-Nafion composite nanowire bundles showed p-type semiconductor characteristics. The drain-source current decreased with incre...

متن کامل

Scale-Dependent Dynamic Behavior of Nanowire-Based Sensor in Accelerating Field

The accelerating fields (e. g. centrifugal acceleration and constant acceleration) can change the physical performance of nano-sensors significantly. Herein, a new size-dependent model is developed to investigate the scale-dependent dynamic behavior of nanowire-fabricated sensor operated in an accelerating field. The scale-dependent equation of motion is developed by employing a consolidation o...

متن کامل

Real-time monitoring of electrochemical controlled protein adsorption by a plasmonic nanowire based sensor.

A plasmonic sensor composed of a vertically aligned gold nanowire array was fabricated and employed for the optical detection of protein adsorption induced by an electric field.

متن کامل

Vertical Silicon Nanowire Arrays for Gas Sensing

The goal of this research was to fabricate and characterize vertically aligned silicon nanowire gas sensors. Silicon nanowires are very attractive for gas sensing applications and vertically aligned silicon nanowires are preferred over horizontal nanowires for gas sensing due to the high density of nanowire arrays and the increased nanowire surface area per substrate area. However, the developm...

متن کامل

Vertically Aligned Pd Nanowires for Glucose Oxidase Bioanode

A bioanode for glucose based biofuel cell have been fabricated by combining glucose oxidase and highly ordered Palladium (Pd) nanowire array electrode. The Pd nanowires were 5.57 μm in length and 64.28 nm in diameter. The hydrogel composite modified Pd nanowire array bioanodes were characterized with cyclic voltammetry in the presence of different scan rates and different substrate concentratio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015